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In a recent report from these laboratories,1 a new “linch-
pin” 1 was disclosed that allows for rapid construction of
the all-E oxopolyene network characteristic of many polyene
macrolide antifungal agents (Figure 1).2 This methodology
relies on an initial Pd(0) coupling, where 1 serves as the
nucleophilic partner. The acetylenic terminus can be regio-
and stereoselectively hydrozirconated, and while introduc-
tion of an acyl moiety could be accomplished in the presence
of Me2AlCl,3 a second Pd(0)-catalyzed vinyl-vinyl coupling
was not realized due to the highly deactivated, conjugated
vinylic zirconocene.4 This limitation encouraged us to
pursue a second-generation reagent that would make avail-
able not only all-E oxo tetra- and oxo pentaenes but also
the oxo hexaene framework as well. We now describe a
redesigned tetraene equivalent 2, which provides synthetic
opportunities not available to 1.

Bromo trienyne 2 is prepared via E-bromo dienal 4 and
the ylide derived from 5 utilizing a standard Wittig protocol
(Scheme 1). Known precursor potassium salt 3 (mp > 350
°C) is obtained from inexpensive pyridine‚sulfur trioxide
complex.5 Conversion of 3 to bromo dienal 4,6 reported to
proceed using Br2/PPh3 in CH2Cl2, in our hands affords low
yields of desired product. Attempts to modify conditions
(e.g., changing the solvent to 1,2-dichloroethane, adding
Bu4N+X-, various concentrations, and temperatures) or
conversion to other leaving groups (e.g., the triflate deriva-
tive of 3) were not productive. In time, we found that use
of NBS/PPh3 led to a good isolated yield of 4 (74%; 68:32
E/Z, separable by chromatography). The corresponding
iodide6 could likewise be prepared using NIS/PPh3 (76%; 1:1
E/Z). Treatment of phosphonium bromide 57 with NaN-
(TMS)2 in THF8 followed by aldehyde (E)-4 (mp 66-68 °C)
affords tetraene equivalent 2 in 86% yield as an g85:15
mixture of E,E,E to E,E,Z isomers.

The vinyl bromide portion of 2 represents a polarity
inversion relative to stannyl dienyne 1 and, hence, could be
coupled with vinyl- and dienylzinc reagents 6 (n ) 1, 2;
Scheme 2). Nucleophilic partners appear to tolerate TIPS-
protected alcohols, substituted styryl residues, and divalent
sulfur (Table 1). Yields tend to be uniformly good, and the
ratio of E:Z products associated with the newly formed bond

reflects maintenance of stereochemical integrity, as ex-
pected.9 These initial products could be desilylated to 7 and
either hydrozirconated and then transmetalated to alumi-
num with Me2AlCl3 or carboaluminated directly to the
corresponding vinylalane 8.10 Subsequent exposure to a
chloroformate (or acid chloride) affords the desired conju-
gated polyene esters 9 (or ketones). Representative ex-
amples are illustrated as well in Table 1. Particularly
noteworthy cases include (1) the entire polyene section of
the mycoticins11 (entry 2) and (2) the alarm pheromone
navenone C (entry 4).12

The overall stereochemical outcome of these reactions, as
noted previously,1 is such that essentially all-E products are
obtained notwithstanding the g85:15 mix of polyenynes 7
formed from the vinyl-vinyl cross-coupling/desilylation. The
enhancement results not from eventual isomerization but
rather a kinetic resolution based on the greater reactivity
of the E- vs Z-vinylalane intermediate 8 toward the elec-
trophile.
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Figure 1.

Scheme 1. Preparation of Bromo Trienyne 2

Scheme 2
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Instead of an initial Pd(0)-catalyzed coupling at the vinyl
bromide terminus of 2, the protocol could be inverted,
whereby the alkyne is desilylated and then carboalumi-
nated (Scheme 3). Quenching with ethyl chloroformate, or
methyl chloroformate, leads to bromotetraenes 10 and 11,
respectively. Subsequent coupling of 10 arrives at aryl-
substituted tetraenoate 12, while 11 is converted to oxopen-
taene 13.

Another application of this approach, where 2 is effectively
equivalent to an all-E 1,8-octatetraenyl monocation/mono-
anion (cf. Figure 1), to the oxohexaene portion of the
dermostatins13 is shown in Scheme 4. For this case, target
14 could be constructed in short order in 56% overall yield.

In summary, a very short sequence has been developed
for fabricating all-E, conjugated oxopolyene networks
that constitute key subsections of important natural prod-
ucts. The route relies on a newly fashioned trienyne 2
that participates in both vinyl-vinyl couplings and de-

rived vinylalane acylations to afford highly (light, acid,
base, heat, oxygen, etc.) sensitive polyenes. Further re-
finements, alternative organometallic chemistry, and ad-
ditional applications (e.g., to the preparation of capped
polyacetylenes)14 are in progress and will be reported in
due course.
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Table 1. Coupling Reactions of Linchpin 2

a Fully characterized by spectral and HRMS data. b Isolated, chromatographically purified material. c Yield refers to silylated alkyne
prior to treatment with K2CO3 in EtOH.

Scheme 3. Coupling Reactions of 2 Initially at the
Alkyne Terminus

Scheme 4. Synthesis of the Oxo Hexaene Portion of
the Dermostatins
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